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Abstract
We have developed an automated method that predicts the word
accuracy of a speech recognition system for non-native speech,
in the context of speaking proficiency scoring. A model was
trained using features based on speech recognizer scores, func-
tion word distributions, prosody, background noise, and speak-
ing fluency.

Since the method was implemented for non-native speech,
fluency features, which have been used for non-native speak-
ers’ proficiency scoring, were implemented along with several
feature groups used from past research. The fluency features
showed promising performance by themselves, and improved
the overall performance in tandem with other more traditional
features.

A model using stepwise regression achieved a correlation
with word accuracy rates of 0.76, compared to a baseline of
0.63 using only confidence scores. A binary classifier for plac-
ing utterances in high-or low-word accuracy bins achieved an
accuracy of 84%, compared to a majority class baseline of 64%.
Index Terms: speech recognition, word accuracy rate, non-
native speakers’ speech

1. Introduction
In this paper, we develop a word accuracy rate (WAR)1

prediction method as a supplementary module of the au-
tomated speech proficiency scoring system SpeechRaterTM .
SpeechRater is the automated scoring system of Educational
Testing Service (ETS) [1]. SpeechRater scores the profi-
ciency of non-native speakers’ spontaneous speech as part of
the TOEFL R©Practice Online (TPO), a low-stakes practice test
product.

Recognition of non-native speakers’ speech is, by itself, a
very challenging task and is even more difficult in our case, due
to the large diversity of speaker proficiencies and native lan-
guage backgrounds. While features related to fluency, such as
speaking rate, can be estimated fairly reliably even with mod-
erate word accuracies, this is not the case for features related
to the higher-level aspects of proficiency, such as vocabulary
diversity, grammatical complexity and correctness, or topical

1In this study, the balanced word accuracy rate was used to mea-
sure speech recognition performance. WAR is the mean between the
reference-based and the hypothesis-based word accuracy. WAR is cal-
culated as follows:

WAR = 1
2

{
C

(C+S+D)
+ C

(C+S+I)

}
.

where C = number of the correct words in the word hypothesis,
S = number of the substituted words in the word hypothesis,
D = number of the deleted words in the word hypothesis,
and I = number of the inserted words in the word hypothesis.

coherence. In all of these instances, features rely heavily on
correctly recognized words and so utterances that have word
accuracies that are too low may have to be identified for special
processing. Therefore, our automated method for estimating the
WAR can be a useful tool to determine whether features repre-
senting higher-level aspects of speaking proficiency are reliable
or not.

The overall architecture of our method is as follows: for a
given speech response, SpeechRater performs speech recogni-
tion, yielding a word hypothesis and time stamps, and computes
basic prosodic features (pitch and power). Next, it computes
fluency features for automated proficiency scoring. Finally, the
WAR prediction method estimates the WAR, using output from
the automated speech recognition (ASR) system, fluency fea-
tures, and a number of additional features described below.

This paper will proceed as follows: we will review pre-
vious studies (Section 2), present the automated WAR predic-
tion method (Section 3), and then report the experimental setup
(Section 4). Next, the results will be presented (Section 5) and
compared with the previous studies in depth (Section 6).

2. Previous work
WAR prediction systems have been widely used in ASR re-
search. In particular, methods based on features from the speech
recognizer, such as confidence scores and N-best candidates
[2,3], have rendered promising performances. For example, the
word error detection system in [3] rejected 65.7% of the errors
correctly while falsely rejecting 5.1% of the correct words.

It has been used as an important module for dialogue man-
agement systems [4–6]. Here, the WAR prediction method al-
lows for more effective communication between machines and
humans; it helps to make the decision whether to generate re-
sponses based on the current word hypotheses or reject them
and request the same information again.

Litman et al. [4] found a significant difference in prosody
between speaker turns with and without recognition errors. The
speech recognizer tends to make more recognition errors in very
loud and fast speech. In order to identify these potential error
regions, the authors used features such as amplitude, pitch, and
speaking rate. These prosodic features outperformed the speech
recognizer-based features in their train reservation corpus. The
combination of the two feature groups achieved 93.5% accuracy
in misrecognized turn detection.

Discourse and pragmatic features were also used in previ-
ous research. Walker et al. [5] developed a system based on
pragmatic features (for example, the dialogue move type), dis-
course history, speech recognizer-based features and prosodic
features, and it achieved 86% accuracy in error detection.

The current study can be distinguished from the previous
studies in the following points. First of all, special features
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were implemented to model non-native speech since the method
was developed for non-native speech. Non-native speakers tend
to produce errors and disfluencies more frequently than native
speakers, and the ASR system tends to make more errors in
these non-fluent regions of speech. In order to identify these
non-native characteristics, fluency features related to speak-
ing rate and disfluency, which achieved good performance in
the estimation of the non-native speakers’ speaking proficiency
[1, 7, 8], were implemented. Secondly, in contrast to previous
studies which made a categorical decision as to whether a spe-
cific word or utterance contained a recognition error or not, we
estimate the WAR of a response (file) with a continuous real
value. Finally, various normalization methods were applied for
the features commonly used in previous studies.

3. Method
3.1. Task

The method estimates the WAR using speech recognizer scores,
function word distributions, noise-related features, prosodic
features (such as F0 and power), and fluency features.

3.2. Features for WAR prediction

Five different groups of features were selected and calculated
automatically. A list of features is provided in Table 1.

The category and the name of the feature are presented in
the first and second columns, respectively. New features pro-
posed by this study (new features) are presented in bold text,
while features similar to those used in previous studies such
as [4–6] (basic features) are presented in plain text.

The third column shows the correlation with WAR for
the training data described in 4.1. Some of the new features
achieved stronger correlations than the basic features. For
instance, the mean histogram-probability feature showed the
highest correlation with WAR (r=0.64), and it was stronger
than the correlation of the mean raw confidence score which
achieved the highest correlation among the basic features
(r=0.62).

Finally, the fourth column presents whether the feature was
actually used in the final method or not. A detailed explanation
will be presented in Section 4.3.

3.2.1. Speech recognizer features

The speech recognizer-based features were computed for each
individual word, and the mean and standard deviation of the
scores were computed. In general, the confidence score is a
promising feature in WAR prediction, but it has a skewed dis-
tribution towards high values, and the overall high scores are
not always reliable. Due to this bias, the probability that the
word may be correct given the confidence score has been used
instead of the raw score [9]. In this study, the raw score was
mapped to the probability (histogram-probability) using a his-
togram. The confidence scores of hypothesized words in the
training data were classified into 10 bins, and a histogram was
constructed. The histogram-probability P (qj) for the raw score
qj was computed by:

P (qj) =
N(Sj ,label=1)

N(Sj ,label=−1)+N(Sj ,label=1)

where qj ∈ Sj and, N(Sj , label = 1) is the number of
positive examples in score bin Sj

(1)

Table 1: List of all features for the WAR prediction method
(Features in bold text are new features proposed by this study)

Feature cat-
egory

Feature name Corr. Model

Speech rec-
ognizer

Mean Acoustic
model scorea

-0.34** 8

Mean Language
model scoreb

-0.30** No

Mean raw confidence
scores

0.62** No

STD.c of raw confi-
dence scores

-0.38** No

Mean histogram-
probability

0.64** 1

Proportion of low
confidence scores

-0.50** 6

Confidence score
per second

0.58** 7

Function
word
distribution

Frequency -0.22** 10

Proportion -0.23** 12
Prosody Mean power 0.08 No

Max power -0.09* No
Min power 0.02 No
STD. of pitch nor-
malized by speaker

0.13** 5

Max pitch 0.08* No
Min pitch -0.05 No

Background
noise

Signal to noise ratio 0.05 No

Mean noise level -0.02 No
Peak speech level 0.10 No

Fluency Words per second 0.37** 2
Mean long silence
duration

0.11** 3

STD. of long silence
duration

0.10* 11

Silences per second 0.11** 9
Frequency of
disfluencyd

-0.12** 4

* Correlation is significant at the 0.05 level
** Correlation is significant at the 0.01 level
a Sum of the log probabilities of the reference acoustic model

normalized by number of phones
b Sum of the log probabilities of the reference language model

normalized by number of words
c Standard deviation
d Number of disfluencies such as pauses, fillers, or repetitions in

the word hypotheses

3.2.2. Function word distributions

Out-of-vocabulary words tend to be recognized as a sequence of
short function words. Therefore, if the speech contains out-of-
vocabulary words, the word hypotheses may include more func-
tion words. In order to capture this characteristic, the frequency
and proportion of function words in the word hypotheses were
calculated.

Function word distribution features were computed using
the SMART function word list from [10]. From the word hy-
pothesis, the frequency and the proportion of function words
were computed.
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3.2.3. Prosodic features

Prosodic features (pitch and power) were implemented to iden-
tify very loud or abnormal speech. Pitch and power were ob-
tained using a pitch and power extraction module in the speech
recognizer.

3.2.4. Noise related features

The speech recognizer tends to make more recognition errors
in a noisy environment than in a quiet environment. The signal
to noise ratio (SNR), mean noise level, and peak speech level
were computed using the NIST audio quality assurance (SPQA)
package [11].

3.2.5. Fluency features

Fluency features were implemented to identify non-fluent
speech. Speaking rate and pause-related features, such as the
duration and proportion of total speech, were used in this study.

Fluency features were calculated from the word hypotheses
yielding the number of words, the duration of responses, and
the number and duration of silences.

3.3. Model

Since the predicted value is a real number, a multiple regression
model was used for model building. The regression model was
built using a selected set of basic and new features. The criterion
for selection was a stepwise linear regression analysis using the
training data.

4. Experiment
4.1. Data

In this study, data from the TOEFL R©Practice Online (TPO)
were used for both training and testing. The TPO assessment
consists of 6 items to which speakers are prompted to provide
responses between 45 and 60 seconds per item. The scoring
scale is discrete from 1 to 4, where ‘4’ indicates high and ‘1’
low-speaking proficiency. Additionally, a score of ‘0’ is used to
indicate a non-response and a score of ‘TD’ to indicate techni-
cal difficulties such as static noise that prevented the response
from being scored.

Responses which were scored as ‘0’ or ‘TD’ were excluded
from the study, and a total of 1040 responses were used for
the development and testing of the automated WAR prediction
method. 645 responses were used for training, while 395 re-
sponses were used for testing. There is no speaker overlap
among the training and test data.

The speakers varied widely in their English proficiency lev-
els; the data included fluent speakers, intermediate speakers,
and also a few low-proficiency speakers. Detailed information
about the rating process and proportion at each proficiency level
for the TPO data can be found in [1].

4.2. Speech recognizer

The acoustic model of a gender-independent HMM recognizer
was trained on approximately 30 hours of non-native speech
(TPO data), and a language model was trained using both na-
tive data (1997 Broadcast news data) and non-native data (TPO
data). The WAR on the test data was around 50%. In addition to
word hypotheses, the speech recognizer generates a confidence
score for each word from 0.0 to 1.0.

4.3. Feature selection and model building

First, all features in Table 1 were computed automatically for
each response.

Many features had a significant correlation with WAR, but
they were also strongly correlated with other features. In order
to investigate which combination of features can improve the
regression model, a stepwise linear regression analysis was per-
formed using the training data using the SPSS statistical anal-
ysis program. The order selected in the model is presented in
the fourth column of Table 1. If the feature was not used in the
regression model, the column is labeled ‘No’.

A total of 12 features were selected. Among these 12 fea-
tures, 2 features were from the basic group and 10 features
were from the new group. The best predictor was histogram-
probability, followed by words per second. The new features in
the fluency group and function word distribution did not achieve
strong correlations, but they improved the performance of the
regression model.

Finally, a linear regression model was trained using the
12 features. The WEKA machine learning toolkit [12] was used
for training and testing the model.

5. Results
5.1. Regression

Table 2 shows the performance of the regression models on the
test data.

Table 2: Performance of regression models using dif-
ferent sets of features

Features RMS
Errora

RRS
Errorb

Correlationc

Baseline 0.11 74.8 0.63
Total 0.09 64.3 0.76
a Root mean-squared error
b Root relative-squared error
c Pearson correlation coefficient

The baseline model was trained using only the mean raw
confidence scores, since it has been commonly used in WAR
estimation, and was also used as a baseline in [4]. The total
model improved significantly over the baseline; the correlation
increased from 0.63 to 0.76.

In order to measure the impact of the features on WAR
prediction, the original complete set of features were classified
into five groups (as shown in Table 1) and a regression model
was trained separately for each group. The best features were
the speech recognizer-related features with a correlation of 0.65
with WAR. This was followed by fluency (r = 0.56), function
word distribution (r = 0.18). Background noise and prosody
features did not show significant correlations with WAR.

5.2. Binary classification

In order to see whether the regression model could be used in a
scenario where binary choices need to be made, for example, to
allow the computation of higher-level features for an utterance
or not (as discussed earlier), we conducted a small experiment
where we classified utterances in the test set to ‘low’ or ‘high’
WAR, depending on the output of the regression model. As
a threshold we chose WAR= 0.6, which puts 64% of the test
responses into the ‘low’ bin and the rest into the ‘high’ bin.
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The classification accuracy of this binary task was 84%, a
20% absolute improvement over the majority class baseline.

6. Discussion
Many features used in this study were similar to the features
used in [4–6]. However, the performance of these features
showed different tendencies with our data.

The contribution of the prosody features was weak for this
study. The difference in speech style may be relevant to this re-
sult. In dialogue applications, the speaker tends to speak louder
or raise his/her pitch when the recognizer misrecognizes speech.
This may not happen in our data, since the data is a mono-
logue. These differences may weaken the relationship between
the prosody features and WAR.

Similarly, background noise features did not correlate well
with WAR in our data. One possibility to consider is the noise
type: Fish et al. [13] showed that the influence on WAR dif-
fers according to the noise type. The implementation of the
appropriate features for different types of noise may enhance
the relationship between noise-related features and WAR. Ad-
ditionally, there is not a lot of noise present in most TPO re-
sponses; approximately 90% of the responses are classified by
human raters as having high or very high audio quality.

In this study, the speaking rate was the second best predic-
tor. It had a significant positive correlation with WAR; that is,
if a speaker speaks fast, the accuracy of recognition increases.
This result seems to be inconsistent with [4,14]; they found that
misrecognized word groups are significantly faster than cor-
rectly recognized word groups.

A close comparison, however, can resolve the inconsistency
between these results. In [14], the recognition errors were in-
fluenced by the speaking rate only when it was very high. The
speaking rate did not influence WAR when speakers spoke at a
normal speed2. In our data, no speakers spoke faster than a nor-
mal speed since they are all non-native speakers. This explains
why a negative correlation between WAR and the speaking rate
is not found in this study.

The relationship between the speaking rate and non-native
speakers’ proficiency may explain the positive correlation be-
tween the speaking rate and WAR. The speaking rate is a promi-
nent factor for estimating non-native speakers’ proficiency lev-
els, and it has been widely deployed in automated speech profi-
ciency scoring systems [1,8]. Speakers who speak faster tend to
be more fluent than speakers who speak more slowly. As speak-
ers become more fluent, they make fewer errors, and WAR may
increase. Thus, the positive correlation between the proficiency
and speaking rate may result in the positive correlation between
WAR and the speaking rate.

7. Conclusions
In this study, we presented a WAR prediction method for
non-native speakers’ speech. A regression model was trained
based on speech recognizer scores, function word distributions,
prosody, background noise, and fluency features.

The method is intended to function as a supplementary
module of an automated speech proficiency scoring system.
Thus, the method implemented fluency features which were
specialized for second language (L2) learners’ speech, and flu-
ency features have proven to be very effective in estimating

2WAR decreased sharply when the speaking rate was faster than 12
phones per second.

non-native speakers’ speech proficiency. The strong relation-
ship between non-native speakers’ proficiency and the accuracy
of the speech recognition system also contributes to the predic-
tive power of the fluency features; they were the second-best
predictor of WAR.
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